A Method for The Estimation of The Distribution of Human Capital from Sample Surveys on Income and Wealth

Giorgio Vittadini, University of Bicocca Milan, Italy Camilo Dagum, University of Bologna, Italy and University of Ottawa, Canada, Pietro Giorgio Lovaglio, University of Bicocca-Milan, Italy, Michele Costa, University of Bologna, Italy.

Giorgio Vittadini, Department of Statistics, University of Bicocca-Milan, Via Bicocca degli Arcimboldi 8, 20126 MILAN, ITALY.

KEY WORDS: Human Capital, Latent Variable, Pls, Lisrel, Optimal Scaling

Introduction
This paper proposes a method for estimating the 1983 U.S. household distribution of Human Capital. From the statistical point of view, the HC is defined as a Latent Variable measured by a set of observed mixed indicators in a Path Analysis Model. The HC estimates consider the definitions advanced for a Latent Variable in a Path Analysis with respect to formative and reflective indicators.

The set of indicators and their links with HC
The concept of Human Capital (HC), theoretically and systematically developed over the last 50 years (Mincer 1958, 1970; Becker 1962, 1964 and Schultz 1959, 1961) has been estimated in literature by either the retrospective (Kendrick 1976; Eisner, 1985) or prospective methods (Jorgenson and Fraumeni 1989). The first, dealing with the cost of production, is insufficient for various reasons, because it does not take into account the social costs, such as public investment in education, the variables concerning home conditions and community environments, and the genetic contribution to HC, including health conditions (Dagum and Vittadini 1996). Moreover, the actual effects of the investment in HC on the income and wealth of the households are not considered.

In the prospective method the HC can be defined as the present actuarial value of an individual’s expected income related to his skill, acquired abilities, and education (Dagum and Slottje 2000). However, the prospective method reduces the HC investment to its monetary value in terms of an assumed flow of income, and it ignores the amount of investment in education, job training and other investments. It is also difficult to predict future income.

We now present a new methodology to estimate the distribution of HC in families, giving greater emphasis to economic issues because the definition of HC involves both its investment amounts on families and its effect on income. In this case, instead of quantitative financial indicators, we have a composite set of qualitative and quantitative indicators (Table 1) with the Path Analysis diagram showing their causal links.

The "indirect" set of indicators \(\Gamma = (x_2, x_3, x_6, y_8, y_9, y_{10}, y_{11}, y_{12}, y_{13}) \) involved in the Path Analysis is composed of a set of causal links between themselves and a set of indicators \(\Psi = (x_1, x_4, x_5, x_7, y_1, y_2, y_3, y_4, y_5, y_6, y_7, y_{15}) \) and \(y_{14} \) (total wealth), which measure the investment in education and are directly connected with HC in (2).

As proposed in statistical literature (Tenenhaus, 1995), these indicators can be defined as formative indicators because they “form” or “cause” the multidimensional construct HC in equation (2). \(\text{HC} \) is a “consequence” of the investment in education. It is measured by a set of formative indicators \(F = (y_{14}, \Psi) \).

The most important formative indicators are years of education, years of full time and part time employment, and wealth. Marital status, gender, region and age are involved as well, because the actual value of investment in HC is influenced by these personal and environmental conditions.

The effects on income of the households HC and wealth are presented in (3). Therefore \(y_{17} \) can be classified as reflective indicator, because it reflects HC, in the sense that it is a consequence of the amount and type of the investment in education. Wealth \(y_{14} \) is both a formative indicator and an independent cause of income.

The econometric specification and analysis was made by Dagum (1994) and Dagum et al. (2003).
The statistical definition of the LV HC
We have already stated (Dagum and Vittadini 1996) that, from the statistical point of view, HC can be expressed as an LV. But there are different ways an LV can be defined. Traditionally, a variable can be defined as an LV if the equations cannot be manipulated into expressing the variable as a function of manifest variables (Bentler 1982). In other words, in this definition, an LV is a factor that underlies and causes reflective indicators and accounts for their observed variance in a measurement model (typically the factor model) given the effects of other explicative indicators (in this case the reflective indicator Income, given the effect of the explicative indicator weal th in equation (3)). Otherwise we can define HC as a latent variable caused and measured (with errors) by a linear combination of the formative indicators F in equation (2). Finally we can propose a third, more complete, definition of an LV, as in this case where it is connected with both formative and reflective indicators in a Path Diagram. Hence the latent variable HC can be defined as a linear combination of formative indicators F that best fits the reflective indicator earning income, as in equations (2)-(3).

The proposed methodology
This approach completes the methodology proposed by Dagum and Slottje (2000) where they combine a zero-dimensional latent variable approach (part A) and an actuarial mathematical approach (part B). The Latent Variable approach proposes a new methodology able to obtain the zero-dimensional HC latent variable, then transforms the estimated latent variable into an accounting monetary value, and finally estimates the mean value of HC. The Path Analysis and the Latent Variable Approach are shown in Figure 1.

The Actuarial Mathematical approach starts with the actuarial estimation, in monetary values, of the average human capital by age of economic units and finally estimates the average of the population in monetary units. The synthesis gives the final HC estimation and distribution of American Household.

Table 1 Observed indicators

<table>
<thead>
<tr>
<th>Indirect Indicators Γ</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_2 = H Gender; x_4 = H Race; x_6 = S Age; y_8 = H Years of Not Full-Time Work; y_9 = S Years of Not Full-Time Work; y_{10} = H Job Status; y_{11} = H Occupation; y_{12} = S Occupation y_{13} = S Industry</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Formative indicators $F = (\Psi, y_{14})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ψ: x_1 = H Age; x_3 = Region; x_5 = H Marital Status; x_7 = S Gender; y_1 = H Years of Schooling; y_2 = S Years of Schooling; y_3 = Number of Children; y_4 = H Years of Full-Time Work; y_6 = S Years of Full-Time Work; y_{14} = Household Total Wealth; y_{15} = Household Total Debts.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Reflective indicator</th>
</tr>
</thead>
<tbody>
<tr>
<td>y_{17} = Household Income</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>INDIRECT INDICATORS Γ</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_2 = H Gender; x_4 = H Race; x_6 = S Age; y_8 = H Years of Not Full-Time Work; y_9 = S Years of Not Full-Time Work; y_{10} = H Job Status; y_{11} = H Occupation; y_{12} = S Occupation y_{13} = S Industry</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>INDICATORS OF HOUSEHOLD INVESTMENT IN EDUCATION:</th>
</tr>
</thead>
<tbody>
<tr>
<td>FORMATIVE INDICATORS Ψ</td>
</tr>
<tr>
<td>H: S YEARS OF SCHOOLING; H: S YEARS OF TOTAL TIME WORK; H: AGE; $REGION$; H: MARITAL STATUS; S: GENDER; $NUMBER$ OF $CHILDREN$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>WEALTH y_{14}</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>LATENT VARIABLE HUMAN CAPITAL</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>INDICATOR OF EFFECTS OF HC: REFLECTIVE INDICATOR INCOME y_{17}</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Figure 1: Path Analysis and Latent Variables approach</th>
</tr>
</thead>
</table>

\[
\begin{align*}
 y_{10} &= g_{10}(x_2, x_3, x_4, y_{12}, y_{19}, y_{10} + u_{10}) \\
 y_{11} &= g_{11}(x_1, x_2, x_3, x_4, x_5, y_{12}, y_{19}, y_{10} + u_{11}) \\
 y_{12} &= g_{12}(x_1, x_2, x_3, x_4, x_5, y_{12}, y_{19}, y_{10} + u_{12}) \\
 y_{13} &= g_{13}(x_3, x_4, y_{12}, y_{19}, y_{10} + u_{13}) \\
 y_{14} &= g_{14}(x_3, y_{12}, y_{19}, y_{10} + y_{11} + y_{12} + y_{13} + u_{14}) \\
 y_{15} &= g_{15}(y_{12}, y_{19}, y_{10} + y_{11} + y_{12} + y_{13} + u_{15}) \\
 HC &= Fg = [y_{14}, \Psi] g + u_{16}
\end{align*}
\]
\[y_{17} = y_{14}k_1 + HC k_2 + u_{17} \]

(3)

The Latent Variable Approach: previous proposal

The traditional proposal in statistical literature is to obtain the latent variable \(HC \) as a latent cause which underlies observed indicators by means of Factor Analysis. In this case starting from (3), we obtain:

\[Q_{y_{14}} y_{17} = HC k_2^z + u_{17} \]

(4)

where \(Q_{y_{14}} = 1 - p_{y_{14}} \) is the orthogonal complement of the column spaces of \(y_{14} \) with \(p_{y_{14}} = y_{14}(y_{14}^\prime y_{14})^{-1} y_{14}^\prime \).

By means of Factor Analysis we obtain \(HC \) as the latent cause of the reflective indicator earning income. First of all, in this way we define the HC without taking into account the amount of investment in education measured by the formative indicators \(F \).

Secondly, under general conditions, given earning income Wealth \(Q_{y_{14}} y_{17} \), the parameter \(k_2^z \) is not identified and the scores of the latent variable \(HC \) are not unique. In a Factorial or in a Structural model when the expected values of latent variables are null, the identification problem is essentially whether or not vector \(\Phi \) of parameters and of variances and covariances of latent variables and errors is uniquely determined by the covariance matrix \(\Sigma \) of indicators whose elements are \(\sigma_{ij} \). In other words if a vector \(\Phi \) can be uniquely determined from \(\Sigma \) and therefore if \(\Sigma \) is generated by one and only one vector \(\Phi \) then solving the equations \(\sigma_{ij} = \sigma_i(\Phi), i \leq j \) (with \(p \) manifest variables, there are \(\frac{1}{2} p(p + 1) \) equations in \(n(0) \) unknown parameters), or a subset of them, this vector of parameter is identified and the whole model is said to be identified; otherwise it is not. Anderson and Rubin showed that a necessary condition for identification is that the number of equations \(\sigma_{ij} = \sigma_i(\Phi), i \leq j \) must be greater than the order of the vector \(\Phi : p \geq 2t n(0) + 1 \). However, since the equations above are often non-linear, the solution is often complicated and tedious, and explicit solutions for all \(\Phi \)’s seldom exist. “No general and practically useful necessary and sufficient conditions for identification are available” (Everitt 1984).

If a model is not completely identified, appropriate restrictions may be imposed on \(\Phi \) to make it identifiable. The choice of restrictions may affect the interpretation of the results of an estimated model. Under general conditions for the Factor Model, if we do not consider a few very restricted cases in which conditions for identifiability are studied analytically, e.g. where the endogenous variables are measured without error (Geraci 1976), the problem cannot be resolved. In practice, it is suggested (Jöreskog, 1981b) that “The identification problem can be studied on a case by case basis by examining the equations”, choosing the restriction, not only in number but also in position, in order to obtain unique solutions. This is also true in the case of local identifiability of the parameters (Wegge 1965, 1991 Fisher 1976, Rothenberg 1971, Geraci 1976, Boller and Pollock 1986, Shapiro 1985, Bekker 1989, 1991, Wegge and Feldman, 1983).

In our case, we have one equation \(\sigma_{ij} = \sigma_i(\Phi) \):

\[\sigma_{Q_{y_{14}}y_{17}} = (k_2^z)^2 + \sigma_{u_{17}} \]

(5)

With two unknown values, the square of the parameter \(k_2^z \) and the variance of the error \(u_{17} \). Therefore, under general conditions, when the Reliability Ratio between \(\sigma_{Q_{y_{14}}y_{17}} \) and \((k_2^z)^2 \) is unknown or the variance of the error \(\sigma_{u_{17}} \) is not identifiable (Fuller, 1987).

Regarding the problem of indeterminacy we can verify that, under general conditions, the matrix of observed indicators is less than the matrix of latent scores and errors. Therefore, it can be demonstrated that even if the model is identified the latent scores are indeterminate. There are infinite sets of latent scores for the same identified model. It can be proved that some of them can be either negatively correlated to each other (Reiersol 1950; Guttmann 1955; Anderson and Rubin 1956; Lawley and Maxwell 1963; Jöreskog 1967; Schonemann and Wang 1972; Schonemann and Steiger 1978; Steiger 1979; Schonemann and Haagen 1987). In this case, given \(Q_{y_{14}} y_{17} \), we can obtain infinite sets of scores of \(HC \); moreover some of them can be negatively correlated.

An alternative proposal is given by the Partial Least Squares Method (from here on referred to as PLS): PLS provides estimates of parameters \(g \) in (2) defining and estimating an LV “by deliberate approximation as a linear aggregate of its observed indicators” (Wold 1982). In this definition the \(HC \) appearing in (2) is not a factor of the observed reflective indicators (3) but an unobserved theoretical construct, approximated by a linear combination of observed formative indicators, e.g. following equation (2):

\[HC = Fg \]

(6)

where \(HC \) is the proxy obtained by reducing the loss of information with respect to the unobservable HC. There are two alternatives for obtaining the solutions of \(HC \) in (6) by means of the PLS. The PLS mode A is based on iterative multivariate regressions of the LV’s on the observed indicators; therefore, if there is a single LV, it cannot be used, because it causes “circular solutions” without improvements in the iterations. The PLS mode B is based on simple iterative regressions on the observed indicators \(F = (y_{14}, \Psi) \). It can be proved that the estimate of \(HC \) is equivalent to the first principal component of \(F \) (Wold 1982). Therefore we have in (6):

\[HC = Fv_1 = y_{14}v_{11} + \Psi v_{12} \]

(7)
where $F = (y_{14}, \Psi)$ and $v_1' = (v_{11}, v_{12})'$ is the first eigenvector of FF', HC is the first principal component of F after its standardization to unit variance (Var(HC) = 1), v_{11} contains the element of the first eigenvector connected with y_{14}, v_{12} is the sub-vector of v_1 connected with Ψ.

First of all, the estimate HC of HC does not take into account the actual effects of the investment in HC on the income and wealth of the households.

Secondly, also from the statistical point of view, there are some general critique about the solutions obtained by means of PLS (Garthwaite 1994).

In this case, in particular, every solution that can be obtained from (3) starting from (7) is logically inconsistent. In effect, substituting HC^\wedge obtained by (7) in (4) we obtain:

$$Q_{y_{14}} y_{17} = HC k_2^\wedge + u_{17} \quad (8)$$

and from (7) we have:

$$k_2^\wedge = HC^\wedge Q_{y_{14}} y_{17} = (y_{14} \psi_{11} + \psi_{12})' Q_{y_{14}} y_{17} = v_{12}' \psi' Q_{y_{14}} y_{17} \quad (9)$$

from which k_2^\wedge cannot consider the whole HC contribution to earned income $Q_{y_{14}} y_{17}$ because, by definition, the indirect contribution of Wealth on Income y_{17} by means of HC is null.

However, if we consider equation (3) where the dependent variable is Income y_{17} we have, substituting HC obtained by (7):

$$y_{17} = [y_{14}, y_{14}, \Psi] \begin{bmatrix} 1 & 0 & k_1 \\ 0 & v_{11} & k_2 \\ 0 & v_{12} & k_2 \end{bmatrix} + u_{17} \quad (10)$$

In (10) we observe the presence of collinearity between regressors, and if we join the parameters, we cannot divide the direct contribution of Invested Wealth on Income and the indirect contribution of Wealth by means of HC. In effect,

$$y_{17} = y_{14}\{k_1 + v_{11} k_2\} + \psi v_{12} k_2 + u_{17} \quad (11)$$

The Latent Variable Approach: a new proposal

It has been shown that the solutions obtained by means of the Factor Model are not unique and that the solutions obtained by the PLS Method are not logically consistent (Lovaglio 2003). In order to overcome this problem, a solution can be found in the use of all the information embedded in the Path Analysis model (2) (3). In this way, the HC is not previously obtained in equation (3) but, respecting the economic relationships is simultaneously obtained from reflective and formative indicators. In this perspective, observing the Path Analysis model (2) and (3), HC can be defined as a multidimensional construct approximated by the linear combination of its formative indicators (y_{14}, Ψ) that better fits the only reflective indicator $Q_{y_{14}} y_{17}$, where we can define as the earned income effect.

Therefore we have from (2):

$$Q_{y_{14}} y_{17} = F g k_2 + u_{17} = F k_3 + u_{17} \quad \text{where } k_3 = g k_2 \quad (12)$$

In (12) we obtain k_3^* by means of an ordinary Least Squares Regression of $Q_{y_{14}} y_{17}$ on F. The k_3^* vector contains the effects of the formative indicators F on earned income $Q_{y_{14}} y_{17}$:

$$k_3^* = g k_2 = S_F^{-1} F' Q_{y_{14}} y_{17} \quad \text{where } S_F = F' F \quad (13)$$

Premultiplying the equation (13) by F and taking into account (2) we obtain:

$$F k_3^* = F g k_2 = HC k_2 \quad (14)$$

Remembering that Var(HC) = $S_{HC} = 1$ we reach:

$$k_3^* S_F k_3^* = k_2 S_{HC} k_2 = k_2^2 \quad (15)$$

From (15) we obtain k_2^\wedge, the effect of HC on income net of wealth $Q_{y_{14}} y_{17}$:

$$k_2^\wedge = [(y_{17}' Q_{y_{14}} F S_F^{-1} F' Q_{y_{14}} y_{17}]^{1/2} =$$

$$= [y_{17}' Q_{y_{14}} P_F Q_{y_{14}} y_{17}]^{1/2} \quad (16)$$

where $P_F = F(F' F)^{-1} F'$.

Therefore, from (13) and (16), we obtain g^*, the effect of the formative indicators F on HC:

$$g^* = k_3^*/k_2^* =$$

$$= [y_{17}' Q_{y_{14}} P_F Q_{y_{14}} y_{17}]^{1/2} S_F^{-1} F' Q_{y_{14}} y_{17} \quad (17)$$

At this point from (2) and (17) we obtain the estimation of HC scores (HC^*):

$$HC^* = F g^* \quad (18)$$

The Latent Variable Approach: mixed indicators

In our case, some of the formative indicators are categorical.

Therefore we partition the vector of formative indicators into quantitative (contained in the column of matrix F_q) and categorical indicators F_c in order to obtain consistent solutions with the quantitative case. We express the equation (2) in the following way:

$$HC = F_c g_c + F_q g_q + u_{160} \quad (F_c = x_{55}, x_{56}, x_{57}, x_5) \quad (19)$$

where $F = (F_c, F_q), g = (g_c, g_q)$.
We avoid the approach of the Item Factor Model (Christoffersson 1975; Olsson 1979; Muthen and Christofferson 1981) consisting of a Factor Model with qualitative and categorical indicators. In effect, this model increases the difficulties concerning the original factor model. The non-realistic hypothesis of the normality of qualitative indicators, and some restrictive assumptions, determine an underestimation of the true correlation between different indicators, the asymptotical distortions of standard errors and the non-association of goodness of fit statistics (Quiroga 1991; Vittadini 1999).

We choose the multidimensional scaling method ALSOS, which alternatively estimates, in separate steps the parameter vector \(g \) and quantifies the categorical indicators \(F_c \) by means of a unique algorithm, inside a specified model, the Multiple Regression Analysis (De Leeuw, Young and Takane 1976; De Leeuw and Young 1978; De Leeuw and Van Rijckeveorsel 1980; Young 1981; Gifi 1981; Keller and Waansbeek 1983).

We adapt this methodology in order to obtain the \(HC^* \), with the same methodology proposed in the quantitative case. If at the first step we arbitrarily choose the parameters \(g_{(0)^*} \), we obtain the first quantification of \(F_{(0)^*} \).

\[
F_{(0)^*} = F_c \cdot g_{(0)^*} \text{ with } F_{(0)^*} = (F_{(0)^*}, F_0) \quad (20)
\]

At this point, we introduce \(F_{(0)^*} \) in (11) using equations (13)-(17), we obtain the first estimates of the parameters \(k_{3}^{(1)^*} \), \(k_{3}^{(1)^*} \), \(g_{(1)^*}^{(1)^*} = (g_{(1)^*}^{(1)^*}, g_0^{(1)^*}) \) and by means of (18) the first estimates of \(HC, HC^{(1)^*} \). Using \(g_{(1)^*} \) in (19) we obtain a new quantification \(F_{(1)^*} \) of indicators \(F_c \). The iterative process continues until we have no more changes in \(k_{3}^{(1)^*}, k_{3}^{(1)^*}, g_{(1)^*}^{(1)^*} \), \(HC^*, F^* \). Therefore, in this way, the case of mixed indicators is treated similarly to the case of quantitative indicators.

Human Capital in monetary units.

As a proposed multidimensional construct, the methodology estimates \(HC^* \) by a linear combination of mixed formative indicators \(Y_{14}, Y_{17} \) that best fits the reflective indicators \(Q_{Y_{14}}, Y_{17} \). Its estimation is consistent with well-established economic theory.

Using the 1983 Federal Reserve Survey of 4,103 households as a representative stratified sample of 83,422,111 American households (Avery and Elliehausen 1985) we obtain the \(HC^* \) scores and distribution which represent the estimated \(HC \) standardized scores and distribution of the American households (Figure 2).

![Figure 2: Standardized distribution of HC](image)

At this point, as shown in Dagum and Slottje (2000), we transform the estimated standardized latent variable \(HC^* \) into an accounting monetary value applying the following transformation

\[
HC^0(i) = \exp \left[HC^*(i) \right] \quad (21)
\]

Then we estimate its mean value:

\[
\mu(HC^2) = \frac{\sum_{i=1}^{n} HC^0(i) f(i)}{\sum_{i=1}^{n} f(i)} \quad (22)
\]

where \(f(i) \) is the number of households in the entire population of American households that the \(i \)-th sampled household represents, \(HC^0(i) \) is the accounting monetary value of \(HC^*(i) \) and \(n \) is the sample size.

By an actuarial approach the authors estimate the real \(HC \) upon the idea that an individual’s expected mean income at age \(x+t \) of a person of age \(x \) should be equal to the mean earned income of individuals being at the present \(x+t \) years old; therefore the average human capital \(h(x) \) of households head of age \(x \) is equal to the average expected earned income by age of the households head actualised at a given discount rate and weighted by the survival probability. Hence, the average human capital \(h(x) \) of the households head of age \(x \) (assumed to stay in the labour market until age 70) is:

\[
h(x) = \sum_{t} y_{x+t} \cdot p_{x+t} \cdot (1+i)^{t} \quad t=0,..70-x \quad (23)
\]

where \(y_{x+t} \) is the mean income (real) of the households head of age \(x+t \), \(p_{x+t} \) is the probability of survival at age \(x+t \) of a person of age \(x \) and, \(i \) is the discount rate (estimated to be 0.08). Therefore the estimation of the average \(HC \) of the population of American families in monetary units was obtained by Dagum and Slottje (2000) as the weighted mean of \(h(x) \):

\[
\mu(h) = \sum_{x=20}^{70} \frac{h(x)f(x)}{\sum_{x=20}^{70} f(x)} \quad (24)
\]
The value of average HC of the population of American families is estimated to be $238,703 and it is used to obtain the exponential transformation HC° of the standardized latent variable $HC^\circ(i)$ in current monetary value. Multiplying $HC^\circ(i)$ by the ratio between its mean value $\mu(HC^\circ)$ and $\mu(h)$

$$HC(i) = HC^\circ(i) \frac{\mu(h)}{\mu(HC^\circ)} \tag{25}$$

we obtain the vector $HC(i)$ of the sample observations in national monetary units, with real mean and variance. The distribution of $HC(i)$, which is the estimate of the distribution of HC for the entire population of American families in 1983, is plotted in Figure 3.

![Figure 3: Distribution of US Household (10.000$)](image)

The advantages of the proposed model
The proposed method has several advantages.
1) It uniquely estimates the scores of HC from manifest variables (MV), consistently with the supposed causal relations, avoiding treating the formative as reflective and vice versa.
2) The parameters are estimated in a causal model framework because the LV is not exactly defined as a linear combination of its manifest indicators and the error matrix is interpretable as true stochastic errors.
3) The approach is nonparametric.
4) In the case of many dependent reflective indicators this method can be generalized by means of the Redundancy Analysis (Tso, 1981), proposed in PLS Path modeling (Tenenhaus, 1995; Lovaglio, 2001).

References

Guttman, L (1955). The det erminacy of fact or scores

