THE FOURIER FORMULA FOR DISCONTINUOUS
FUNCTIONS OF SEVERAL VARIABLES

A.N. Podkorytov and Mai Van Minh

We would like to talk about following problem. Suppose Ω is convex compact
set in \(\mathbb{R}^m \) and \(\chi_\Omega \) its indicator. Obviously its Fourier transformation \(\hat{\chi}_\Omega \) is not
summable in \(\mathbb{R}^m \), if \(\text{Int}(\Omega) \neq \emptyset \). The problem is to interpret the integral in the
R.H.S. of the inversion formula

\[
\chi_\Omega(y_0) = \int_{\mathbb{R}^m} \hat{\chi}_\Omega(x)e^{-2\pi i x \cdot y_0} dx,
\]

while keeping the equality true. For example if \(\Omega = \square = [a_1, b_1] \times \ldots \times [a_m, b_m] \) is
a rectangular parallelepiped it is not hard to verify that

\[
\int_{[-R,R]^m} \hat{\chi}_\square(x)e^{-2\pi i x \cdot y_0} dx \underset{R \to +\infty}{\longrightarrow} \chi_\square(y_0) \quad \text{for } y_0 \notin \partial \square.
\]

But as mentioned in [1], if \(\Omega = \bigcirc = \{ y \in \mathbb{R}^m | \| y \| \leq 1 \} \) is a sphere then the
situation becomes more complicated. If \(y_0 \neq 0 \) then

\[
\int_{\| x \| \leq R} \hat{\chi}_\bigcirc(x)e^{-2\pi i x \cdot y_0} dx \underset{R \to +\infty}{\longrightarrow} \chi_\bigcirc(y) \quad \text{for } y_0 \notin \partial \bigcirc
\]

(in case \(\| y_0 \| = 1 \) the limit equals \(\frac{1}{2} \)). At the same time when \(m \geq 3 \) at \(y_0 = 0 \) these
integrals do not have a limit. In [2] the sphere \(\{ \| x \| \leq R \} \) have been replaced by a cube and it has been shown that when \(m = 3 \) and \(y_0 = 0 \) the following equality is
correct \(1 = \lim_{R \to +\infty} \int_{[-R,R]^3} \hat{\chi}_\bigcirc(x) dx \). In order to extend this result, we could prove
that for every convex compact set \(\Omega \subset \mathbb{R}^m, m \geq 2 \), the following equality is correct

\[
\chi_\Omega(y_0) = \lim_{R \to +\infty} \int_{x \in RW} \hat{\chi}_\Omega(x)e^{-2\pi i x \cdot y_0} dx \quad \text{for } y_0 \notin \partial \Omega,
\]

if \(W \) is polyhedron in \(\mathbb{R}^m \), \(0 \in \text{Int}(W) \) and the sides of \(W \) and their extensions do
not cross the origin. If \(m = 2 \) we can take as \(W \) any compact convex neighborhood
of the origin instead of polygon. In this case the inversion formula remains the
same for \(y_0 \notin \partial \Omega \). And, what is more interesting, if \(W \) is simmetrical (relatively
the origin) at every point of \(y_0 \in \partial \Omega \) there is finite limit of integrals on \(RW \). It
equals \(\frac{1}{2} \), if \(y_0 \) is not boundary angular point (vertex). For boundary angular point
this limits depends on choice of \(W \).

[1] Pinsky M. A., Stanton N. K., Trapa P. E. Fourier series of radial functions
